A Study on the Energy Usage Prediction and Energy Demand Shift Model to Increase Energy Efficiency
keyword: Energy, Energy usage fee, LSTM, Clustering, Time Series K-means, shift of demand
초록: 현재, 에너지 효율 향상으로 소비감축을 시행하는 새로운 에너지 시스템이 대두되고 있다. 이에 스마트그리드가 확산되면서 계시별 요금제가 확대되고 있다. 계시별 요금제는 계절별 / 시간별로 요금을 다르게 적용해 사용량에 따라 요금을 내는 요금제이다. 본 연구에서는 에너지 전력 사용량 데이터를 예측하기 위해, 온도/요일/시간/계절 등 외부 요인을 고려하고 시계열 예측 모델인 LSTM을 활용한다. 이러한 에너지 사용량 예측 모델을 기반으로 기기별 사용패턴을 분석하여 전력 에너지를 최대부하시간대에서 경부하시간대로 수요이전 함으로써 에너지 사용요금을 절감한다. 기기별 사용패턴을 분석하기 위해서는 시간대별로 기기의 사용량 패턴을 학습 및 분류하는 clustering 기법을 사용한다. 정리하자면, 본 연구에서는 사용자의 전력 데이터 사용량을 기반으로 사용량과 사용 요금을 예측 및 기기별 사용패턴을 분석하고 분석 기반의 맞춤형 수요이전 서비스를 제공함으로써 사용자에게 요금 절감 효과를 가져다 준다.